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Abstract—Decision trees are machine learning models com-
monly used in various application scenarios. In the era of big
data, traditional decision tree induction algorithms are not suit-
able for learning large-scale datasets due to their stringent data
storage requirement. Online decision tree learning algorithms
have been devised to tackle this problem by concurrently training
with incoming samples and providing inference results. However,
even the most up-to-date online tree learning algorithms still
suffer from either high memory usage or high computational
intensity with dependency and long latency, making them chal-
lenging to implement in hardware. To overcome these difficulties,
we introduce a new quantile-based algorithm to improve the
induction of the Hoeffding tree, one of the state-of-the-art online
learning models. The proposed algorithm is light-weight in terms
of both memory and computational demand, while still maintain-
ing high generalization ability. A series of optimization techniques
dedicated to the proposed algorithm have been investigated from
the hardware perspective, including coarse-grained and fine-
grained parallelism, dynamic and memory-based resource shar-
ing, pipelining with data forwarding. We further present a high-
performance, hardware-efficient and scalable online decision tree
learning system on a field-programmable gate array (FPGA)
with system-level optimization techniques. Experimental results
show that our proposed algorithm outperforms the state-of-the-
art Hoeffding tree learning method, leading to 0.05% to 12.3%
improvement in inference accuracy. Real implementation of the
complete learning system on the FPGA demonstrates a 384 x to
1581 x speedup in execution time over the state-of-the-art design.

I. INTRODUCTION

Decision tree algorithms are a popular class of machine
learning algorithm and have been deployed in many real
scenarios [1]-[3]], especially when multiple decision trees
are combined into powerful ensemble models, such as XG-
Boost [4] and random forests [5]. Recently, the ensemble of
decision trees as deep forests [6] has been reported to produce
comparable performance compared to deep neural networks.
However, there are several drawbacks that limit the full
exploitation of the traditional decision trees (e.g., IDT3 [[7],
CART [8]] and C4.5 [9]])). The first drawback is the extensive
memory consumption during the training process, which is
proportional to the size of datasets. Classic decision tree
learners assume that the complete datasets can be preloaded
before training starts. This reduces their capability to train with
large-scale datasets, especially when, nowadays, large amount
of data is being generated daily. The second disadvantage
comes with the learners’ inability to adapt themselves to new
data once the training process is terminated. In the era of

big data, the size of datasets is no longer the bottleneck of
learning algorithms. Instead, the ability to effectively learn
from massive data and rationally make use of incoming data
becomes more fundamental and critical.

To broaden the applicability of decision tree algorithms,
extensions from traditional tree algorithms to batch learning
and online learning (or so-called incremental learning) have
been studied, which aim at adapting the models to incoming
data without losing previously learned knowledge. One of the
state-of-the-art online learning methods for streaming data is
the Hoeffding tree [10] algorithm and its variants [[11]]-[18].
The Hoeffding tree presents an enhancement of the decision
tree induction algorithm which leverages the accumulated sam-
ples to estimate complete datasets statistically. It is capable of
performing training and inference concurrently. The Hoeffding
tree is widely used in various application scenarios [[19]—[22].

While efficient software implementation has been investi-
gated for processors to accelerate the Hoeffding tree [12],
[13]], there are still many hindrances to the compact imple-
mentation and optimization of the Hoeffding tree design from
the hardware perspective. We identify two principal challenges
limiting Hoeffding tree implementation in hardware: 1) the
high cost of memory usage to store the required subset of
samples as well as characteristics in each leaf node; and 2)
the high computational demand with dependency and long
latency between iterations in the learning process, which can
hamper efficient data processing with optimization schemes
such as parallelism and pipelining. Furthermore, we observe a
trade-off between the above two factors in the state-of-the-art
designs: the methods in [13]] and [14], attempting to reduce the
memory usage, tend to extensively increase the computational
intensity and latency, and vice versa, as in the proposed
methods of [[11] and [[12f]. The high and unbalanced need
of memory and computation makes the existing approaches
difficult to efficiently implement in hardware, especially on
FPGAs where memory and digital signal processing (DSP)
resources are both limited. Motivated by the above chal-
lenges and observations, we seek opportunities to implement
and optimize the Hoeffding tree in a hardware-friendly and
scalable way, and also strive to make use of resources in a
more balanced manner. In this paper, we propose the first
and complete implementation of the Hoeffding tree learning
system on FPGA, with the following contributions:

« We first introduce a quantile-based algorithm for Hoeffd-



ing tree induction, which uses light-weight computation
and constant memory, while preserving high accuracy.

« We present hardware optimization techniques dedicated
to the proposed algorithm, in order to achieve high
hardware efficiency and scalability. These includes dif-
ferent levels of parallelism, dynamic and memory-based
resource sharing, and pipelining with data forwarding.

« We investigate optimization techniques for tree growing,
categorical attribute learning and split judgment to estab-
lish the complete online decision tree system on FPGA.

II. ALGORITHM AND CHALLENGES
A. Hoeffding Tree Induction Algorithm

The basic induction flow of the Hoeffding tree [10] is
the same as the conventional decision trees [23]], except that
Hoeffding tree exploits the potential for the currently seen
sample set to represent an infinite sample set. The Hoeffding
tree algorithm is described in Algorithm (1| Hoeffding bound
(additive Chernoff bound) [24] tells how close the current best
split approaches the optimal split given an infinite sample set.
Suppose we make n independent observations of a random
variable r within range R. The Hoeffding bound guarantees
that the true mean 7 of r will be at least E[r] — €, with
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Let G(a;) be the best measurement (e.g., gini impurity
reduction) of a chosen split attribute a;. The Hoeffding tree
searches for the best and second-best G(-) values amongst all
attributes. Given the sample set of size n for a specific node
and a desired ¢, the Hoeffding bound justifies that the current
best attribute is the exact best attribute from an infinite dataset
with probability 1 — ¢, if the following equation is satisfied:

R2In(1/96)

G(Best attr.) — G(2"" Best attr.) > - (2)

An additional tie condition is applied: when the two best
attributes have close G(-), a split is taken if the Hoeffding
bound is lower than a certain threshold 7. That is,

R2In(1/9)

G(Best attr.) — G(2" Best attr.) < —y  <T 3)

B. Challenges

Studies [11]]-[14] have introduced several methods to im-
prove the basic Hoeffding tree algorithm. These methods, how-
ever, reveal two main challenges for hardware implementation.

1. High Cost of Memory Utilization. In VFML [12],
both numeric and categorical attribute values are preserved
in a fixed number of bins (denoted as n;;1) in a first-come-
first-served manner. If all the bins are occupied, the newly
coming attribute values unseen in all the bins are simply
discarded during runtime. Although this method works well
with categorical attributes of which values are discrete and the
total number can be determined in the compile time, it requires
a bin of large size to fit each numeric attribute per class per
node to achieve a wide value coverage. Hence, the memory

Algorithm 1: Traditional Hoeffding tree algorithm

input : samples denoted as (z,y)

output: Hoeffding tree denoted as HT'

1 for each (z¢,yt) coming at time t do

2 filter (z¢,y¢) to leaf | of HT

3 sample number in leaf I: n; <—n; + 1

4 update bin count (attr;,valy, classy) n;jj in leaf I
5 if split trial is activated then

6 compute left/right partitions according to m;x

7 compute G(-) for each attribute

8 if G(best) - G(2% best) > 4/ RZ#(;/&) or

RZin(1/9)

“on, < 7 then

Split leaf [ on the best attr.
Initialize count n;;, for each leaf

, ‘

Algorithm 2: Incremental Gaussian approximation

input : samples denoted as (attr,q;, weight)
output: mean of Gaussian approximation denoted as M
output: variance of Gaussian approximation denoted as V'

1 weight sum: w_sum < first weight
2 variance sum: v_sum < 0
3 M <« first attryq
4 for each sample (attr,q;, weight) in sample set do
5 w_sum <+ w_sum + weight
6 MpT’Lor ~— M
. M« M+ attryqi—Mprior
w_sum
8 v_sum < v_sum ~+ (attryqr — Mprior) X (attryq — M)
9 Vo« _v_sum _

w_sum—1

requirement grows significantly with the number of attributes.
This similarly exists in the method [14] using Greenwald and
Khanna summaries [25]], which requires to construct sample
distribution from up to thousands of tuples per attribute-class
combination per node. The exhaustive binary tree method [|11]]
also suffers from injudicious use of memory because it needs
to dynamically allocate memory for sample storage.

2. High Computational Intensity with Dependency and
Long Latency. To reduce memory utilization, Gaussian-based
methods [13]], [14] are applied to trade much higher com-
putational intensity for memory efficiency. For each numeric
attribute per class, the sample distribution is estimated in
a form of Gaussian distribution. As the Gaussian function
is determined by only two values, namely, mean and vari-
ance, the memory usage can be significantly compressed to
F#attribute X #class x 2 per node. However, the incremental
update process of the mean and variance leads to high compu-
tational demand, as shown in Algorithm [2] The requirement of
computation resources is proportional to both the number of at-
tributes and classes. Besides this, the split judgment stage also
requires computing the cumulative density functions (CDFs)
at each split point, which entails even higher computational
power. Moreover, the update process incurs long latency and
should be in order of time if the two successive iterations
work on the same label. In addition to the high computational
intensity, the long latency and data dependency further hinder
this method from being effectively optimized in hardware.

III. METHODOLOGY

As BRAM and DSP are limited resources for FPGAs, the
excessive use of either on-chip memory or computation units



Algorithm 3: Hoeffding tree induction with quantiles

input : streaming samples denoted as (z,y)
output: Hoeffding tree structure denoted as HT'
Let a; (1 <4 <|A|) denote the attribute in set A
Let ¢j (1 < j < |C|) denote the class in set C
Let a (1 < k < |Q|) denote the quantile index

1 for each (z¢,y:) € sample set do

2 filter (z¢,y¢) to leaf f of HT
3 sample num. at f: ny < ny +1
4 for j from 1 10 |C| do
5 | sample num. in class j: ny; < (y¢ ==7) ? npj+1:ny;
6 for i from 1 to |A| do
7 max. attr. value: mazq, < (a; > mazq;) ? a; : mazq;
s min. attr. value: ming,; < (a; < ming;) 7 a; : Ming,
9 for j from 1 to |C| do
10 if y == j then
11 for k from 1 to |Q| do
12 Qijt(ag) «
Qiji—1(ar) — Asgna (Qiji—1(ak) — a;)
13 if split trial is activated then
14 for i from 1 to |A| do
15 for p from 1 to |P| do
mazg, —Mming,; .

16 pt < \;’Hl L X p+ming,
17 for j from 1 to |C| do
18 left distribution L: distp;(pt) < 0
19 for k from 1 to |Q| do
20 distr;;(pt) < (pt >

Qije(ay)) T distpij(pt) +1:

d’iStLi]' (pt).
21 diStLij(pt) — dzst|+?]|(pt) X nfj
22 diStRij (pt) «— ng; — diStLij (pt)
23 compute G(a;) for all pt
2 if G (best)-G(2"? best) > 1/%(;/6) or

B2in(1/3) lan(;/ 8 < 7 then

25 ‘ split [ on the best attr & initialize new leaves

in the aforementioned methods [11]]-[|14] is neither efficient
nor scalable while handling numeric attributes. The two design
challenges described above and their interplay should be taken
into consideration for joint optimization. To this end, we
propose to introduce an up-to-date quantile algorithm in the
induction of online decision trees.

A. Quantile Estimation Using Asymmetric Signum Functions

Quantiles [26] are cutting points dividing the range of a
probability distribution into a certain number of intervals with
equal probabilities. The quantile function Q(-) of a continuous
variable is defined as the inverse of the CDF, F'(z) = Pr(x; <
z). Specifically, Q(-) can be written as

Qa) = Fgl(a) =inf{z € supp(Fx) : a < Fx(x)}. @)

The state-of-the-art quantile estimation using asymmetric
signum functions is studied in [27] and [28]]. The quantile
approximation calibrates the quantiles in a sequential manner
according to every incoming sample. The quantile calibration
process from sample z;_; to x; can be described as

Qi(a) = Qi—1(a) — Asgna(Qi—1(a) — x¢), (5)

where sgn(-) is the asymmetric signum function defined by
sqnal(z) = {a, if 2<0

if 2>0 ©

1—a,
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Fig. 1. Partition strategy in the proposed algorithm, illustrated with one
attribute, two labels and eight quantiles.
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Fig. 2. Using eight quantiles to estimate the CDF of normal distribution with
a round-down scheme.

B. Learning Numeric Attributes with Quantile Approximation

To handle numeric attributes, we develop a new algorithm in
the Hoeffding tree induction process by applying the quantile
estimation with asymmetric signum functions, which is de-
scribed in Algorithm [3| The proposed algorithm encompasses
two key features: 1) a separate set of quantiles is maintained
per attribute per class (line 6 to 12); and 2) the strategy to get
left/right partitions based on the attribute distributions (line 14
to 22) has been customized to support the quantile method.
Note that the number of quantiles to use is determined by the
characteristics of the datasets. This is studied in Section

A straightforward method [[12]] to deduce the partitions is
to view each sample as a split point and compute distribution
individually: for an attribute ¢ and a specific sample’s attribute
as the split point pt;, an arbitrary sample is sorted to the left
partition if its attribute value a; < pt;, or otherwise, it is
filtered to the right partition. In our algorithm, we learn the
samples with quantiles and represent sample distribution in
CDF: each quantile value () indicates that the percentage
is «ay, for the samples with the attribute values smaller than
Q(ay). In this way, sample storage is not required.

Fig.[T]illustrates how the overall partitioning strategy works.
We generate a set of split points evenly distributed in the full
range of attribute values. These split points are compared to the
quantiles individually to find out the interval of two quantiles
[Q(ak), Q(ag+1)] containing the split point. Afterwards, the
sample number in each partition can be determined. The
portion of samples with attribute values smaller than or equal
to Q(ay) goes to the left partition, whereas the others go to
the right partition. By this method, the sample distribution in
the left partition is rounded down to the nearest quantile, with
an example shown in Fig. 2]

The proposed algorithm overcomes the trade-off between
memory and computation, and presents a more rational
and balanced solution compared with state-of-the-art meth-
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Fig. 3. System overview of the Hoeffding tree implementation with the
proposed algorithm.

ods [11]-[14]. The advantages of this proposed method are
three-fold. Firstly, the sample characteristics are fully gen-
eralized and encapsulated in a set of quantiles, dispensing
with the need to store any samples in the training itera-
tions. The memory requirement is reduced to #attribute x
#label x #quantile per leaf node. This outperforms existing
methods [11], [12] which require large attribute or sample
storage. Secondly, the computation demand is notably reduced
compared with the memory-efficient yet computation-intensive
method, Gaussian method [13]], [14f]: only comparison and
subtraction are involved in quantile approximation, whereas
Gaussian approximation entails expensive computation as
shown in Algorithm 2] The complexity of partition deduc-
tion is also effectively simplified with the proposed method.
Thirdly, the problem of data dependency can be resolved
with hardware optimization through deliberate parallelism and
pipelining, as introduced in Section

IV. ARCHITECTURE DESIGN
A. System Overview

The system overview of the Hoeffding tree implementation
is depicted in Fig. 3] Starting from the sample buffer, the
tree management engine first reads and decodes the sample
information. At the same time, it fetches relevant tree nodes
from the tree node storage and filters the samples to the leaf
nodes in a pipelined way. Thereafter, both the inference engine
and training engine start processing the samples.

In the learning process, samples are decomposed into sep-
arate attributes and the characteristics of each attribute are
learned and stored independently. When a split trial is invoked
at a leaf node, for each numeric attribute, a partition deduction
unit uses the quantiles and split points to deduce left and right
partitions. As for categorical attributes, the sample counts of
all attribute-class combinations form a histogram, which is
similar to the quantiles for numeric attributes.

The partition information of every attribute is then processed
by a split quality measurement unit to compute the split gain
for each split point. Then, the best and second-best split gains
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Fig. 4. (a) Decision tree architecture; (b) tree management pipeline structure;
and (c) bit decomposition of tree node memory.

are identified, and the split decision is given by the Hoeffding
bound judgment unit. If a split is taken, the split information
is sent back to the split controller to update the tree structure.

B. Tree Management Units

The tree management units maintain two operations: 1)
filtering samples to different leaf nodes, which requires tree
traversing; and 2) splitting leaf nodes by overwriting the tree
node memory after receiving split requests.

The tree traversing process for each sample starts from the
root node down to a specific leaf node, thus involving several
rounds of memory reading. Considering the case of streaming
data input, the tree memory may receive multiple read requests
from different samples concurrently. Multi-port memory can
be used to support this feature. However, the required port
number is linearly related to the tree depths. FPGA BRAMs
naturally support up to two ports, and increasing the port size
turns out to be an inefficient solution. We observe that the
samples are processed at different tree levels sequentially and
the samples from different time steps require memory reading
from different tree levels. Hence, we separate the node storage
according to tree levels, as depicted in Fig. [ (a), and dual-
port memory is enough to support both node splitting and tree
traversing for streaming samples. The idea of using a separate
memory structure has been adopted in DT-CAIF [29]], whereas
we develop a fine-grained pipeline structure for each tree level.
All the tree levels together form a deep pipeline.

The fine-grained pipeline needs to support both tree travers-
ing and node splitting. A three-stage pipeline is formed, as
shown in Fig. ] (b). The tree traversing routine consists of
node reading (R), attribute selection (A) and branch decision
(B) stages. As for node splitting, split information (mainly
the split node level, node ID, split coefficient and attribute
index) from the training engine is passed across different tree
levels. When a leaf node is reached, the corresponding memory
element is overwritten by the split information to replace the
leaf node with an internal node. Moreover, two new leaf nodes
are generated in the next level and the split pipeline also writes
in the new leaf nodes the training elements they are associated
to. This is related to the dynamic leaf node-element allocation
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scheme discussed in Section All the operations relevant
to the split are completed in the split (S) stage, after which
two nop (N) states are followed. The bit information stored in
the memory for branch decision is shown in Fig. 4] (c).

C. Learning Numeric Attributes

In our proposed Algorithm [3] recall that we maintain a set of
quantile values per numeric attribute per class for a single leaf
node. Optimization techniques are investigated for accelerat-
ing quantile learning from the hardware perspective, which
can be summarized as: 1) attribute-level (coarse-grained)
and quantile-level (fine-grained) parallelism; 2) dynamic and
memory-based resource sharing; and 3) pipelining with data
forwarding for data dependency removal.

Attribute-level (Coarse-grained) and Quantile-level
(Fine-grained) Parallelism. As shown in line 6 to line 12 of
Algorithm [3| different attributes are independent and, within
each attribute, the quantiles Q(-) per class are also indepen-
dent of each other. This allows us to speed up the quantile
computation process with both attribute-level and quantile-
level parallelism, as shown in Fig. 5} Note that we do not
take class-level parallelism even though it is possible. This
is because each sample contains a unique class label but has
multiple attributes. The learning process only needs to update
the set of quantiles matching the sample label. Based on this
fact, parallelizing at class level does not offer any benefit.
Instead, we seek opportunities for class-level optimization
through resource sharing and pipelining.

Dynamic and Memory-based Resource Sharing. For each
leaf node, it is required to maintain a number of quantiles per
attribute per class. If hardware copies are simply replicated
for each leaf node, both the memory and arithmetic resource
utilization becomes too expensive for hardware to implement.
In light of this problem, we develop a dynamic leaf node-
element allocation scheme as the tree grows dynamically and
a memory-based resource sharing mechanism for quantile
update routine.

To differentiate between a leaf node of the tree and the
physical resource allocated for a leaf node in the training
process, we call the former a leaf node, while we denote the
latter as an element. A leaf node is only temporarily being a
leaf node, and it may be split as samples assemble. Therefore,
it is not necessary to statically allocate physical resources
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Fig. 6. Dynamic leaf node-element allocation scheme.
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Fig. 7. A single quantile computation unit with the memory-based resource
sharing scheme.

to each leaf node. We devise a dynamic leaf node-element
allocation scheme, as shown in Fig. [0l The training engine
maintains a node-element table to keep track of the leaf node-
element pairs. During the split process, the split controller
generates new leaf node-element pairs and sends them back
to the training engine. The traning engine then updates the
leaf node-element relationship in the table. In this way, the
leaf node-element allocation change dynamically and resource
reuse in hardware is facilitated.

A memory-based resource sharing scheme is designed to
collaboratively work with the dynamic leaf node-element
allocation scheme for further resource sharing. This scheme
leverages two facts: 1) each sample is only sorted to one leaf
node, so only one element will be activated for quantile update
per sample; and 2) for each attribute, only the set of quantiles
corresponding to the sample label will be activated per sample.
Since the quantile learning process is the same for all classes
and elements, except that the quantile values are different, we
devise the following memory-based resource sharing scheme:
for each attribute, all the classes of all elements share one
set of quantile computation logics and all the corresponding
quantile values are stored in one memory. When a sample is
used for training, the set of quantiles corresponding to the
specific element and class is fetched, and later, the updated
values are stored back to the same memory location. Element
and class values together form the memory addresses. Putting
it all together, a single quantile computation unit with memory-
based resource sharing is depicted in Fig. [/} To support this
mechanism, each leaf node in the tree memory preserves a
field denoted as leaf information to training shown in Fig. [
(c). Provided a new split, the two new leaf nodes along with
their assigned element IDs are sent from the training engine to
the tree node memory for update. For each sample after tree
traversing, the element ID associated with its reached leaf node
and the raw sample data are sent to the training engine.
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Pipelining with Data Forwarding. There exists data de-
pendency for quantile computation: two successive samples
sorted to the same leaf node should update the same element
in a sequential way. For the method with Gaussian approxi-
mation, the long latency of the update process, as described in
Algorithm [2] makes it difficult to overcome this dependency.
For the proposed quantile computation architecture in Fig.
the computation is reduced to a comparison and a subtraction
per quantile unit, which allows us to fully exploit the pipeline
architecture with data forwarding to resolve data dependency.

We propose a 5-stage pipeline architecture for the quantile
update routine, as shown in Fig. [§] (a). The first stage (F)
fetches a sample from the sample buffer. The second stage (B)
decides on the execution branch to take, including element ini-
tialization in the dynamic leaf node-element allocation scheme,
quantile computation and quantile output for the split trial. In
the next stage (R), the quantile unit selected by the element
and class is read out. Afterwards, the quantile is updated in the
computation stage (C) following Equation (3], and is written
back to the same memory location in the writing stage (W).

In stage C, we address the data dependency problem by the
adoption of a dedicated data forwarding method, as shown in
Fig.[8](b), which aims at providing the flexibility that, when the
quantiles are updated while not yet written in the memory, they
are directly passed to the quantile computation engine if the
addresses between these two computation periods match. We
keep track of the results and quantile memory addresses of the
prior two computation periods, which are managed by stage
C and stage W, respectively. Stage C has a higher forwarding
priority over stage W when both memory addresses match the
one currently processing, because stage C provides the most
up-to-date results. This data forwarding allows us to bypass
memory operations when dependency occurs and eventually
leads to a throughput of one sample per cycle.

D. Learning Categorical Attributes

The process of learning categorical attributes is similar to
learning numeric attributes. However, the value and size of
each categorical attribute is determined by dataset characteris-
tics, which can be known in design time. Therefore, counting
the number of occurrence for each attribute-class combination
gives a histogram of the distribution without any loss of
information. In a split trial for categorical attributes, each
attribute value is used as a split point individually: the samples
with the attribute value equal to the split point is filtered to
the left, or otherwise, it is sorted to the right.

The optimization methods, except the dynamic leaf node-
element allocation scheme, can be migrated to categori-
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Fig. 9. Histogram update with status table.

cal attributes seamlessly. However, to support the dynamic
leaf node-element allocation scheme, the histograms of all
attribute-class combinations for an element need to be ini-
tialized simultaneously. This brings difficulties as we apply
memory-based resource sharing in which the same dual-port
histogram memory is shared amongst different class labels,
and multiple write requests to the same memory is inefficient
for FPGA design. To overcome this problem, we additionally
implement a status table for histograms. Every memory unit in
the status table represents an individual histogram, and each bit
indicates the status of a column of this histogram. To initialize
a histogram when a new leaf node-element pair is assigned,
only the corresponding memory unit in the status table, instead
of all units in the histogram, needs to be reset. The training
routine first checks the status table for each incoming sample,
and follows either of the two situations (i.e., initialization or
increment) as depicted in Fig. [0] The relevant status bit is set
to high when the first sample comes after initialization.

E. Simplification of Split Measurement with Hoeffding Bound

The study in [30] has shown that the choice of split
measurement method does not exert a significant impact on the
accuracy of decision tree induction. We adopt gini impurity [§]]
as it is commonly used and has low computational demand.

Gini impurity is a measure of the chance for an example
to be incorrectly classified if it is randomly labeled according
to the distribution of the labels. Let p; be the probability of
examples being labeled as class j (j € 1,2,...,|C|) in the
dataset S. Gini impurity can be represented as

IC|

gini(S)=1-— Zp? @)
j=1

The split quality for a given partition is based on the reduction
in gini impurity after a split is taken. If S' is split into the left
subset Sy, and right subset Sg, the reduction in gini impurity
can be described by

- %gim‘(éﬁ) - %gim(&a). (8)

We combine the split measurement with the Hoeffding
bound judgment for joint optimization in hardware. Let S, ;
and Sr_; be the subset of S7, and Sy labeled in 7, respectively.

We reorganize the reduction in gini impurity G as follows:

G = Agini = gini(S)

|C| |C]
1 1 2 1 2 .
G:——E S +—§ Srjl7) +gini(S)—1. (9)
|S|(\SL|].:1| B0 1Skl j:1| o) gini(s)




TABLE I
INFERENCE ACCURACY USING DIFFERENT NUMBERS OF QUANTILES.

Dataset Gaussian Quantile method with different quantile size
method 2 | 4 | 8 | 16 | 24 | 32 | 64 | 128 | 25 | 512
Bank 89.10% 88.79% | 89.05% | 89.15% | 89.30% | 89.31% | 89.32% | 89.26% | 88.52% | 88.66% | 88.59%
Telescope 76.16% 76.68% | 74.61% | 76.41% | 76.12% | 76.15% | 76.64% | 75.51% | 75.75% | 76.75% | 71.32%
Electricity 76.26% 76.97% | 77.26% | 78.02% | 76.31% | 77.93% | 77.53% | 76.91% | 76.75% | 76.61% | 74.15%
Covertype 71.02% 72.46% | 7217% | 72.712% | 72.51% | 72.50% | 71.86% | 73.43% | 71.90% | 70.94% | 69.41%
Person 39.00% 4590% | 48.82% | 51.38% | 52.49% | 53.37% | 52.35% | 52.40% | 47.94% | 47.44% | 49.60%
) o ) ) ) TABLE 11
Putting the gini impurity reduction and Hoeffding bound RESOURCE UTILIZATION AND FREQUENCY OF FPGA DESIGN.
together, the calculation can be reorganized as
o o Dataset | Size | LUT! | BRAM?| DSP?| Freq. (MHz)
Gp, — Gpy =— Z 1SBy,1.41 T Z 1S5, rjl%) — Bank 45211 | 63079 486 202 308
|5 ! |SBl s Rl ; Telescope | 19020 | 73800 | 480 184 305
. Electricity 45312 54198 384 138 300
P A Covertype | 581012 | 169334 | 1883 1126 170
1 1 Person | 164860 | 59401 986 191 266
g Z‘BQLJ|+ Z‘SBQR]‘
| By, L\ rl; I Total No. LUT: 1182240  2Total No. BRAM: 2160 ° Total No. DSP: 6840
10
(1o TABLE III

To search for the best and second-best attributes, we only need
to compute the split quality denoted in Equation for each
split point, instead of the full term of gini impurity reduction
in Equation (9). After that, the whole term of Equation (I0)
is computed for Hoeffding bound judgment. This noticeably
simplifies the calculation for each split point.

To further optimize the computation, we eliminate the
division ﬁ in Equation by pre-storing and looking up
the values in memory. The square-sum calculation in the split
quality term is realized with a pipelined multiplier-adder tree.

V. EXPERIMENTS
A. Experimental Setup

In the experiments, we put our main focus on online tree
learning. The differences in traditional, batch and online tree
learning have been studied in prior works [10], [31]] and are
not elaborated in this paper. We first implement the software
version of our proposed algorithm in StreamDM-C++ [13]],
the state-of-the-art software toolkit supporting the Hoeffding
tree. The parameter settings related to the Hoeffding bound
are Nomin = 200, ny = 10, 7= 0.05, § = 1073 and A = 0.01,
according to [10], [13]] and [28]. The maximum leaf number is
1024, and the maximum tree depth is 15. We use a 32-bit fixed-
point data representation with a 30-bit fraction for numeric
attributes, after normalizing the data to within the range of
[-1,1], if necessary. We evaluate the design with five large
datasets: Bank Marketing (Bank), MAGIC Gamma Telescope
(Telescope), Australian New South Wales Electricity Market
(Electricity), Covertype and Person Activity (Person) from the
UCI machine learning repository [32]] and related works [[13]],
[33]. The optimized hardware is designed in Verilog and
implemented on the Xilinx VCU1525 platform [34] using
SDAccel 2018.2. The datasets are transferred from CPU to off-
chip memory (DDR4) on the FPGA platform through PCle.

B. Tuning the Number of Quantiles

We tune the number of quantiles in a wide range to eval-
vate the model performance. The evaluation methodology is
Interleaved-test-then-train: each sample is first passed through
testing before it is applied for training. This is a commonly

PERFORMANCE COMPARISON: BATCH LEARNING & ONLINE LEARNING.

Method | Platform | Freq. | Exe. time
Batch learning [33]] Intel Stratix IV 200 MHz 118 s
This work Xilinx Ultrascale+ 170 MHz 3.97 ms

used evaluation method for online learning models, and the
model performance is evaluated by inference accuracy for the
entire datasets. In this way, both the online training and testing
phases fully utilize the whole datasets, which is different from
offline training methods that require a train-test division and
need to separately evaluate training and testing accuracy.

Experimental results in Table [[] show that the inference
accuracy may be degraded significantly as the number of
quantiles becomes either too small or too large, especially for
the Person dataset. When the quantile number is small, the
learning ability of the model may be constrained, because the
learned distribution is too coarse-grained to provide effective
information. Conversely, if the quantile number becomes too
large, the generalization ability may be impaired as well, since
the design is more prone to noise in the datasets. Setting the
quantile number between 8 and 32 provides high accuracy
with desirable robustness. Considering the fact that memory
and computation demand is proportional to the number of
quantiles, we adopt a unified quantile number of 8 in the
hardware design. One can also tune the quantile number to
best fit a target dataset. Table |lI| shows the size of datasets
and information about FPGA implementation.

C. Comparison with Batch Learning on FPGA

The up-to-date method to cope with decision tree learning
with large datasets on FPGA is through batch learning. The
work [33]] presented a state-of-the-art FPGA architecture for
batch-based decision trees. Covertype is used as the only
benchmark in [33[], and it serves as the baseline for comparison
in Table The accuracy and overall resource usage are not
given, but study in [10] has proven that both Hoeffding tree
and batch tree can lead to the same results for large datasets
asymptotically. Table [lI| shows that our proposed online learn-
ing design can offer an up to S-orders-of-magnitude speedup in
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Fig. 10. Gaussian and quantile estimation of true CDFs of three representative attributes from Electricity dataset.
TABLE IV and quantile methods on the Xeon E5-2680 platform under 2.6
COMPARISON OF SOFTWARE AND HARDWARE EXECUTION TIME. GHz. As shown in Table our prOposed hardware designs
CPU exe. time FPGA on FPGA achieve 423 x to 1526 speedup over the Gaussian
Dataset Gaussiz antil i Speedup ;
aussian | Quantile | exe. time method and 384 x to 1581 x speedup over the quantile method
Bank 027 s 0.25s 0.36 ms 750 / 694 x in software implementation, respectively.
Telescope 0.11 s 0.10 s 0.26 ms 423 /384 x
Electricity 021s 0.20 s 0.42 ms 500/ 476 x VI. RELATED WORK
Covertype 6.06 s 6.28 s 3.97 ms 1526 / 1581 x .. . . .
Person 079 s 075 s 0.93 ms 849 / 806 x Decision tree acceleration on FPGA has been widely inves-

execution time in comparison to [33]]. This significant speedup
stems from the difference in communication patterns. The
work [33] involves a number of rounds of transmission for
the same samples from and to the off-chip DDR memory in
the training process per batch: it reads the sample set at the
start of a split process and writes back the subset of samples in
each resulting split. By contrast, our proposed online training
architecture only requires reading each sample once in the
entire learning process, thus reducing a large amount of high-
cost inter-chip communication.

D. Comparison with the State-of-the-art on Processors

StreamDM-C++ [13] reported that Gaussian method pro-
vided the best performance amongst prior methods [[11[]—[14],
so it is used as the baseline in this paper. Regarding infer-
ence accuracy, our proposed algorithm with eight quantiles
outperforms the Gaussian method for all five benchmarks, with
0.05% to 12.3% improvement, as shown in Table m

The results of CDF approximation using the quantile
method and Gaussian method account for this gap in ac-
curacy. Three attributes with representative distributions in
the Electricity dataset are selected to illustrate the results, as
shown in Fig. [[0] The sample set is the subset in the root
node before it is split. The CDF of the first attribute is close
to the Gaussian function, and thereby, the Gaussian method
provides slightly better fitting results than the quantile method.
However, regarding the second and third attributes, the quan-
tile method outperforms the Gaussian method. The Gaussian
method assumes that the sample distribution conforms with
Gaussian distribution, and lead to poor approximation quality
for distributions unlike Gaussian. By contrast, the quantile
method makes no presumption of any distribution, and hence,
it offers accurate approximation for various distributions,
including Gaussian distribution. In other words, the quantile
method has a wider scope of applicability than the Gaussian
method, which accounts for the improvement in accuracy.

For the execution time, we integrate the quantile method
in StreadDM-C++ and run this toolkit with both the Gaussian

tigated. Most of the existing works [35]-[38]] have targeted
FPGA-based acceleration of inference engines. For decision
tree training on FPGA, the work [39] migrated the gini com-
putation from software processing to FPGA implementation.
The work [29] sought an SoC solution where the training
stage was executed by a soft-core processor on FPGA, while
the inference unit was implemented with FPGA logics. The
work [40] first designed a complete traditional decision tree
training system on FPGA and devised a FIFO-based sorter to
facilitate sorting for training, but the memory utilization was
high and the maximum size of the datasets was restricted.
To reduce memory usage, the work [41] improved upon [40]]
by employing dataset compression and decompression, with
additional data preprocessing time. The work [33] proposed
the state-of-the-art of batch learning of decision trees on
FPGA. However, it turns out to be inefficient for training large
datasets, mainly because it requires transmitting the same sam-
ples between the FPGA and off-chip memory multiple times.
By contrast, our work introduces a light-weight algorithm
along with a hardware-friendly architecture for online decision
tree learning, placing no restrictions on the size of datasets and
only requiring one-time inter-chip transmission of the datasets.
To the best of our knowledge, this paper introduces the first
design and optimization of an online decision tree that is
applicable to large-scale datasets, and is meanwhile, suitable
for FPGA acceleration.

VII. CONCLUSION

Online decision tree algorithms suffer from either high
memory usage or high computational intensity with depen-
dency and long latency. In this paper, we introduce an ef-
ficient and scalable quantile-based induction algorithm for
the Hoeffding tree, and we investigate hardware optimization
techniques specific to this algorithm. Finally, we build an
online decision tree learning system on FPGA with system-
level optimizations. Our design remarkably reduces memory
and computational demand, while achieving 0.05% - 12.3%
improvement in accuracy and 384x — 1581x speedup in
execution time over the state-of-the-art design.
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