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Abstract—High-level synthesis (HLS) enables designers to
customize hardware designs without the need for delving into
low-level hardware details. However, it is still challenging to es-
tablish the correlation between power consumption and hardware
designs at an early design stage such as HLS. To overcome this
problem, we introduce HL-Pow, a pre-register-transfer-level (pre-
RTL) power modeling and optimization framework for FPGA
HLS with the aid of up-to-date artificial intelligence techniques,
which features high accuracy, speed and generalization ability.
HL-Pow is comprised of a power modeling framework and a
design space exploration (DSE) engine. The power modeling
framework encompasses (1) a fully customized and light-weight
feature construction flow to effectively identify and capture
features that exert a major influence on power consumption;
and (2) a modeling flow that can build an accurate, fast and
transferable pre-RTL power estimator. With HL-Pow, the power
evaluation process for hardware designs with FPGA HLS can
be significantly expedited by circumventing the invocation of
the time-consuming logic synthesis, physical design and gate-
level simulation steps. Furthermore, we describe a novel a priori
knowledge-guided DSE algorithm which can combined with
our power modeling approach to jointly achieve the design
optimization for latency and power consumption with high
efficiency and high quality. Experimental results demonstrate
that HL-Pow produces accurate power prediction that is only
4.82% away from onboard power measurement, while offering a
speedup of 24–190× (84× on avg.). In addition, HL-Pow shows
high generalization ability across applications with different
characteristics and from various domains. Finally, the proposed
DSE algorithm can reach a close approximation of the real Pareto
frontier while only requiring traversing a small subset of design
points in a broad design space.

Index Terms—FPGA, high-level synthesis, power modeling,
machine learning, design space exploration.

I. INTRODUCTION

High-level synthesis (HLS) [1] automates the process of
translating applications described by high-level languages
(e.g., C++ and Python) into cycle-accurate register-transfer
level (RTL) designs. With the aid of HLS tools, design-
ers targeting hardware implementation on field-programmable
gate arrays (FPGAs) or application-specific integrated circuits
(ASICs) are no longer required to make a great effort devel-
oping hardware micro-architectures, e.g., carefully crafting the
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Fig. 1: Comparison of FPGA power estimation methods with
HLS: the preliminary method (b) shows a speedup of 2.5–61×
(20× on avg.) over the conventional method (a); our HL-Pow
methodology (c) demonstrates a speedup of 1.4–23× (7.8× on
avg.) over method (b), finally leading to a compound speedup
of 24–190× (84× on avg.) over method (a).

intra-component and inter-stage pipelines. In addition, modern
HLS tools are able to deliver relatively good estimation of
quality of results (QoR) regarding performance and resource
estimation, and also offer a series of design knobs, or so-
called directives or pragmas, to help designers tune the two
aforementioned design metrics. Overall, the productivity and
flexibility brought by HLS notably speed up the development
process of hardware designs, opening up a number of op-
portunities for efficient design space exploration (DSE) [2]–
[10]. However, even the off-the-shelf HLS tools [11]–[13] are
still lacking in mature power analysis techniques, making it
difficult to clearly pinpoint the influence of different HLS
optimization strategies on power consumption.

Power consumption is a primal concern for a broad spec-
trum of FPGA designs, especially for portable electronic
devices and embedded systems. The common practice to
obtain FPGA power consumption is through real measurement
or gate-level power estimation, both of which require designers
to spend substantial efforts. The traditional FPGA power
evaluation flow starting from HLS is shown in Fig. 1 (a).
Given a C/C++ program, the HLS front-end and back-end
flows are invoked to convert software programs into RTL
designs. Afterwards, the RTL and physical implementation
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flow, including logic synthesis, placement and routing, etc,
is applied to compile the RTL designs into gate-level netlists.
Subsequently, to perform power measurement, the bitstreams
are converted from gate-level netlists and transferred to hard-
ware systems for execution, and power consumption can be
measured on FPGA by specialized devices. As for power
estimation, gate-level simulation with real data as input is
additionally performed to capture switching activities of the
IO and internal signals. Thereafter, pre-built power analyz-
ers [14]–[16] are deployed to compute power consumption,
leveraging the gate-level netlists and signal activities as the
input. Finally, in pursuit of higher power efficiency, designers
can refine the hardware architectures according to the feedback
of power consumption, and reimplement the above design flow
again for verification. Nevertheless, the development of power-
efficient designs usually necessitates multiple rounds of power
evaluation and design modification, which results in a long
design time and high labor intensity.

The state-of-the-art works [17]–[21] have presented power
modeling techniques to accelerate the power analysis process
of FPGA designs. These methods fall into two categories:
post-RTL power modeling and pre-RTL power modeling. Post-
RTL power modeling methods [17]–[19] first collect architec-
tural information from the gate-level netlists of post-synthesis
or post-placement&routing and signal activities from vector-
based simulation or onboard detection, and then develop a
learning-based model specialized for each hardware design,
and finally perform power inference at pre-defined time inter-
vals. These methods are time-consuming in acquiring features
for power prediction, and show a lack of generalization ability
to accommodate the pre-built power models to new hardware
designs, which are particularly inefficient for the HLS design
paradigm that typically demands fast QoR evaluation and
optimization across a rich set of candidate design instances.
In contrast, pre-RTL power modeling methods [20], [21] are
faster in evaluation speed by bypassing most of the post-
RTL design stages during power prediction, and thus they
are more appropriate for the HLS paradigm. However, even
the up-to-date research works are restricted to the OpenCL-
to-FPGA programming model [20] or C/C++ programs with
affine functions [21], whose methodologies are difficult to
directly transfer to general HLS design cases.

In light of the above considerations, in this work, we aim to
investigate a generic pre-RTL power prediction methodology
for FPGA designs starting from the HLS design flow, and also
strive to speed up power-oriented design space optimization for
FPGA HLS. Specifically, we propose the HL-Pow methodol-
ogy. First of all, HL-Pow offers a modeling strategy with high
generalization ability so that unseen applications1 can use a
one-size-fits-all predictive model for power inference without
model regeneration as long as the same FPGA substrate is
targeted. Second, the power prediction of HL-Pow for new
HLS applications is fast in runtime, as it dispenses with the
need to go through the tedious post-RTL power estimation
or measurement flow. To the best of our knowledge, HL-Pow

1For the sake of conciseness, we denote an application as a C/C++ program
associated with a set of directive configurations.

is the first work that jointly achieves high accuracy, superior
speed and strong generalization ability for pre-RTL hardware
power modeling with FPGA HLS. Finally, for the first time,
HL-Pow sheds light on the joint effect of loop unrolling and
pipelining on both latency and power of the derived hardware
designs, and further distills this effect into a priori domain
knowledge to effectively guide the latency-power DSE.

A preliminary version of this work appears in [22]. In this
paper, we augment our preliminary work [22] with a light-
weight and fully customized HLS flow to further expedite the
feature construction process, improve the power modeling with
an ensemble learning strategy, generalize key observations to
strengthen our DSE algorithm, investigate more complicated
datasets and study the importance of different features on
power prediction results. As shown in Fig. 1, our enhanced
power modeling flow (see Fig. 1 (c)) reaps an average speedup
of 7.8× over the preliminary work [22] (see Fig. 1 (b)),
and finally leads to an overall speedup of 84× over the
conventional hardware power evaluation method (see Fig. 1
(a)), while maintaining high prediction accuracy. In particular,
we highlight the contributions of this work as follows:

• We introduce a fully customized feature construction flow
for rapid identification and extraction of features closely
related to FPGA power consumption, completely based
upon an optimized and tailored HLS design flow.

• We propose a learning-assisted hardware power modeling
methodology with the ability to deliver accurate, fast, and
transferable pre-RTL power estimation for FPGA HLS.

• We describe a novel a priori-guided HLS DSE algorithm
that can be coupled with our power modeling flow, and
demonstrate how the trade-off between latency and power
consumption can be effectively and efficiently examined.

II. RELATED WORK

A. FPGA Power Modeling

Post-RTL Power Modeling. Post-RTL FPGA power mod-
eling methods [17]–[19], [23]–[25] aim at expediting the
vector-based power prediction process of FPGA accelerators.
Early studies [23]–[25] focus on developing a detailed power
library for atomic components (e.g, look-up tables (LUTs)
or memory units). In an offline stage, the power of each
component of interest is characterized by running micro-
benchmarks that fully exercise this component, and then a
power macro model (i.e., a power LUT or regression model)
is built up to correlate the component’s micro-architecture
and input data pattern to its real-time power. In an online
stage, the power estimation of the holistic hardware design
can be produced by deriving the power of each component
from the library and then simply aggregating all components’
power. These library-based methods require an extensive effort
for power characterization, and are time-consuming when
performing online power computation for large-scale hardware
designs that usually contain more than millions of components.
In contrast, recent studies [17]–[19] seek to generate highly
abstracted power models that enable direct power prediction of
a holistic hardware design. These works identify and capture
as features the RTL or gate-level signals whose activities
are strongly related to power, and generate a learning-based
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model, such as linear regression [17], [18] and decision tree-
based ensemble models [19], to predict power of a target
design at different time intervals. For each hardware design,
a dedicated model should be built up, which cannot be used
by other hardware designs. Even though these methods are
applicable to the HLS design paradigm, their feature collection
and model generation flow incurs large runtime overhead for
the HLS design optimization process, in which a large amount
of design instances should be evaluated.

Pre-RTL Power Modeling. Pre-RTL FPGA power modeling
methods [20], [21], [26] aim to establish the direct relation-
ship between post-RTL power consumption and the pre-RTL
hardware behaviors revealed by OpenCL or C/C++ programs,
which speeds up the power prediction process by avoiding
invoking the post-RTL electronic design automation (EDA)
flow. The work [26] introduces a library-based power charac-
terization method similar to the works [23]–[25] for the post-
RTL stage, which induces considerable runtime overhead for
offline power characterization and online power aggregation.
The recent high-abstraction-level pre-RTL power modeling
works [20], [21] are the closest to our work, which aim at
providing power estimation for the holistic hardware designs
at the OpenCL or C/C++ level. The work [20] targets power
estimation of the OpenCL-to-FPGA programming model.
Based on the fact that the OpenCL paradigm tends to show
predictable behaviors in the form of phases, it decomposes
the execution timeline of a kernel into work-groups, and then
further divides work-groups into work-items. The dynamic
power model is generated according to these two phase levels.
However, this work is restricted to the OpenCL programming
model, which is not compatible with C-based HLS design flow.
The work [21] can be applied to the HLS flow, but its scope
is limited to a specialized type of C/C++ programs that can
be restructured as affine functions (i.e., linear combination of
variables plus a constant). Specifically, the work [21] identifies
the basic code segment of an affine function as a tile, performs
tile-based power characterization, and deduces overall power
consumption of each hardware design by summing up power
of all tiles instantiated by the hardware design.

Overall, the state-of-the-art FPGA power estimation meth-
ods either target post-RTL power estimation [17]–[19] that are
not efficient enough for HLS, or focus on specific pre-RTL
programming paradigms [20], [21] which are not applicable
to general HLS design cases. It is worth noting that HL-Pow
is the first work that overcomes the limits of accuracy, speed,
and generalization ability for pre-RTL power estimation with
FPGA HLS.

B. Design Space Exploration

Offline Modeling Paradigm. A rich body of research investi-
gates automatic DSE for HLS. One direction of automatic DSE
is to embrace an offline modeling paradigm. These methods
establish predictive models offline and use brute-force search
to retrieve an approximate Pareto frontier between two or more
target metrics online. The works [20] and [21] elaborated
in Section II-A are instances that provide exhaustive DSE
after the power models are developed for specific applications.
Apart from power estimation, some works [2]–[4] evaluate

the trade-off between performance and area by producing a
predictive model for fast and early estimation of these HLS
metrics and then walking through a large number of design
points to find optimal solutions. These methods are relatively
fast in metric evaluation, but the traversal of a rich set of
design points is still time-consuming.

Online Modeling Paradigm. Another branch of DSE al-
gorithms focuses on the online modeling paradigm. These
methods first select a small portion of design points to feed
into HLS in real time, distill domain knowledge from the
HLS results, and build up predictive models to find out
promising but unexplored design points for further evaluation.
This procedure is repeated until optimal solutions converge
finally. The commonly used DSE techniques of this type
include (1) meta-heuristics such as genetic algorithm [5] and
simulated annealing [6], (2) domain-specific heuristics [7]
that are tailored for the target problems, and (3) learning-
based approaches [8]–[10] that generate surrogate models for
QoR assessment in real time. These methods do not rely on
a well-developed model for metric assessment in advance.
However, these methods can only select a limited number of
samples as promising candidates to put into ground truth QoR
evaluation, and thus are not able to sufficiently understand
all the characteristics of the dataset, which may give rise to
suboptimal DSE results.

In this work, we propose a DSE framework that fuses the
above offline and online modeling methods into an integration
to get the best of both worlds. In an offline stage, we
develop a transferable model for rapid power inference of
HLS designs. In an online stage, we present a novel a priori-
knowledge guided DSE algorithm to expedite the trade-off
between latency and power with the aid of online design space
sampling. These two stages are complementary to each other,
and our method merges the advantages of the above two types
of methods in an effort to collaboratively enhance the speed
of performance-power co-optimization for FPGA HLS.

III. PRELIMINARIES

A. Power Consumption

In general, the power consumption of hardware designs can
be decomposed into static power [27] and dynamic power [28],
which can be expressed by the following equation:
Ptotal = Pstatic + Pdyn = VddIleakage +

∑
i∈I

αiCiV
2
ddf. (1)

From Eq. 1, we can see that the power is the sum of products
of signal switching activity αi, capacitance Ci on the net
i∈I , supply voltage Vdd and operating frequency f . The static
power consumption is caused by reverse-bias leakage current
Ileakage between diffused regions and the substrates of tran-
sistors, irrespective of the workloads. For FPGA designs, the
static power is dependent upon the utilization of different types
of resources. In addition, the changes in process, voltage, and
temperature (PVT) also affect the static power consumption. In
contrast, dynamic power consumption is introduced by signal
transitions which dissipate power by repeatedly charging and
discharging the load capacitors.
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B. High-Level Synthesis

The HLS converts C/C++ programs in behavioral descrip-
tion into cycle-accurate RTL designs. The complete HLS
design flow contains two main stages: the front-end and the
back-end. In the HLS front-end stage, the C/C++ source code
is first translated into intermediate representation (IR) using
the LLVM [29] compiler. This provides an operation-level
abstraction of the behavior-level programs. Some compiler-
level optimizations are performed along with the IR generation
process, such as bitwidth reduction, dead code elimination,
common subexpression elimination and loop unrolling.

After the front-end execution, the HLS back-end process
first conducts control and data flow graph (CDFG) genera-
tion. The control flow graph (CFG) of the CDFG captures
sequencing, conditional branching and loop structures, while
the data flow graph (DFG) of the CDFG describes behaviors
of operations, i.e., data processing elements. Following this,
three core phases, namely, scheduling [30], allocation [31],
and binding [32], work collaboratively to complete the trans-
formation from CDFGs to hardware architectures. Scheduling
assigns each operation to a control step, i.e., an execution
cycle. Allocation maps each operation to a concrete hardware
component from a set of design variants. Binding associates
each hardware component with a physical instance and estab-
lishes the interconnects between instances. Note that allocation
is sometimes merged into scheduling or binding for unified
optimization. Finally, synthesizable RTL code is generated
using the output from the prior steps.

The off-the-shelf HLS tools usually offer various optimiza-
tion strategies (i.e., so called directives or pragmas) to help de-
signers tune the programs to improve the performance of loops
and memory structures. Among the rich set of optimization
strategies, the most crucial ones are loop unrolling [33], loop
pipelining [34] and array partitioning [35]. Loop unrolling
replicates the code inside a loop body k times with k being
the unrolling factor, increasing the volume of data that can
be processed in parallel. Loop pipelining allows loop itera-
tions to overlap and execute concurrently. Array partitioning
splits a holistic array into multiple smaller elements, each of
which can be accessed independently, so as to boost the data
bandwidth. These three important optimization strategies are
all investigated in this paper.

IV. POWER MODELING METHODOLOGY

The execution of the complete HLS flow is time-consuming
when the design scale is large. We observe that indeed not
every HLS stage, such as the RTL code generation, is able to
produce power-related information. In this work, we aim to
deliver power estimation at the earliest design stage of FPGA
HLS, which avoids performing irrelevant and high-cost steps
that postpone power estimation. To this end, instead of relying
on the commercial HLS tools that do not allow inter-stage
manipulation, we improve upon an open-source HLS toolkit,
Light-HLS [36], trimming the HLS stages and preserving those
that facilitate the power-related feature construction process.

Overall, the HL-Pow framework can be decomposed into
three stages: 1) power training stage: train power model given
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Fig. 2: Overall flow of HL-Pow. HL-Pow consists of three
stages: power model training, power inference and design
space exploration.

a collection of applications, i.e., C/C++ programs along with
a set of directive configurations; 2) power inference stage:
predict power for a new application; and 3) design space
exploration stage: search for the latency-power Pareto-optimal
solutions of a given application. The complete design flow is
depicted in Fig. 2.

In the first stage, i.e., training stage, a number of repre-
sentative applications are used to generate training samples
for power modeling, producing a number of design points
that show significant variances in performance and resource
utilization. These design points first pass through commercial
HLS, logic synthesis and physical design flows to generate
gate-level netlists and bitstreams for onboard implementation,
after which power measurement is performed to collect ground
truth power values. To develop a set of meaningful features
for power learning in a pre-RTL stage such as HLS, we
introduce an end-to-end feature construction flow consisting
of portable HLS front end and scheduling [36], a simplified
binding algorithm, and a feature construction stage. Putting it
all together, the feature set and the corresponding ground truth
power consumption of each design point constitute a training
sample. A collection of training samples derived from different
applications is then used to build learning models capable of
mapping from feature sets to power consumption.

In the second stage, i.e., power inference stage, HL-Pow
can achieve fast and accurate power prediction for new appli-
cations of interest, based upon the pre-trained power model.
Firstly, the new design points of the target application should
pass through our proposed power inference flow to generate
features in the same format as the training stage. Next, the
constructed feature set is fed into the pre-built model for power
inference. In this inference stage, HL-Pow integrates a light-
weight design flow as an alternative to the traditional EDA
flow from HLS to RTL synthesis, physical design, gate-level
power estimation/onboard measurement, which notably boosts
the speed of power estimation.

The third stage, i.e., exploration stage, aims to selectively
sample the design space and provide Pareto-optimal solutions
between latency and power consumption in an efficient way,
which is elaborated in the next section, i.e., Section V.

Our power modeling methodology is platform-independent
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float foo(...){
    out = a[0] * b[0] + c[0];
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Fig. 3: The overview of activity feature construction flow. This flow constructs activity features for power inference from a
high-level perspective using a fully customized design flow, avoiding the invocation of time-consuming back-end EDA process
and gate-level simulation.

and thus it can be used for various FPGA platforms. To set
up a power model on a new FPGA platform, one needs to
collect applications of interest, and follow the design flow in
Fig. 2 to build up power models, after which the trained model
can be used to directly predict power of unseen applications,
provided that the power range of new applications is seen in
the training datasets. Otherwise, new training samples that fall
within the target power range should be used to incrementally
update the power model.

In the remainder of this section, we first present our feature
construction flow by illustrating how we identify and construct
two important types of features, namely, architectural features
and activity features. Thereafter, we introduce the model
architectures and training strategies adopted in our power
modeling flow.

A. Architectural Feature Construction
According to the constituents of power consumption,

namely, static and dynamic power, as discussed in Sec-
tion III-A, we propose to extract features responsible for static
and dynamic power, respectively. Static power largely depends
on the architectural information of the designs implemented
on FPGA. Hence, we attempt to capture the utilization of all
types of FPGA resources as architectural features, including
LUT, block random access memory (BRAM), digital signal
processing (DSP), and flip-flop (FF). Besides this, we also
employ the latency as an overall design evaluation metric.

We obtain the aforementioned metrics using the open-source
Light-HLS [36] tool instead of commercial HLS tools. Light-
HLS is a light-weight HLS simulator that integrates a relatively
complete HLS front-end stage and a portable scheduling al-
gorithm as the back-end process. It is an appropriate substrate
for our modeling task, because it provides users with fast
QoR estimation of resource and latency, and allows us to
fully manipulate the HLS process and remove the stages
unnecessary in our flow. Herein, we propose scaling factor
computation to augment the architectural features.

Scaling Factor Computation. We compute the scaling
factors (SFs) of both the resources and latency as evaluation
metrics for comparison of designs optimized with different
directives. The SF is defined as follows:

SF =
MT

MB
, (2)

in which M represents one of the metrics (i.e., different types
of resources or latency), T denotes the target design point

derived from a C/C++ program and a directive configuration,
and B denotes the baseline design point without applying any
optimization. The SFs serve as a method to quantify the impact
of different directive configurations on the same C/C++ pro-
gram and offer a way to normalize the resource utilization and
performance across different applications, which are useful
features to reveal power, as stated in Section VI-C.

B. Activity Feature Construction

As shown in Eq. 1, dynamic power consumption is mainly
introduced by the signal transitions that give rise to capacitance
charging and discharging. As a result, signal activity is a first-
order indicator of dynamic power. In the conventional power
evaluation flow, the signal activities are extracted via gate-level
simulation, which is cycle-accurate but the runtime overhead
is considerably large, making it unfriendly towards early-stage
power estimation. In this work, we propose to conduct fast
signal activity extraction in the IR level, providing feedback as
early as possible in the HLS stage and bypassing the expensive
low-abstraction-level EDA flow and gate-level simulation. The
full activity extraction flow of HL-Pow is depicted in Fig. 3.
It comprises four fully customized components: DSP binder,
IR annotator, activity generator and histogram constructor.

DSP Binder. The activities of different components in the
hardware design are critical contributors to dynamic power
consumption. Based on this rationale, the DSP binder seeks to
extract activities at a granularity of hardware instance instead
of IR operation, so as to accurately account for dynamic power
consumption from the hardware perspective. We note that
Light-HLS only presents application-level resource estimation
instead of operation-level binding. Nevertheless, operation-
level binding information is necessary to aid in inferring
accurate switching activities from IR operations to hardware
instances by carefully taking the effect of hardware reuse
into consideration. To this end, we propose a DSP binder,
named micro-binding, to perform a light-weight binding algo-
rithm, aiming at mapping each DSP-related IR operation (e.g,
floating-point arithmetic) to an exact hardware unit instance,
i.e., RTL operation. The overall resource utilization of DSPs
in Light-HLS is derived from an analytical model [2] that is
close to optimal. On this basis, our binding task is reduced to
associating each floating-point IR operation with a hardware
unit instance, while ensuring that the total number of hardware
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Algorithm 1: Micro-binding algorithm
input : Schedule information of the operations in basic

blocks of the program
output: B, instance-to-operation mapping set

1 for each basic block b do
2 for each DSP opcode c do
3 for each operation op in bc do
4 top ← the execution cycle of op in b
5 success ← false
6 while not success do
7 success ← BindOperation(b, op, top)
8 top ← top + 1

9 Function BindOperation(b, op, top):
10 inst ← FindReuseInstance(op) // <case-1>
11 if not HaveTimeConflict(b, op, top, inst) then
12 Bc,inst ← Bc,inst ∪ {op}
13 return true
14 inst ← FindIdleInstance(op, top) // <case-2>
15 if inst is not None then
16 Bc,inst ← Bc,inst ∪ {op}
17 return true
18 return false // <case-3>
19 Function HaveTimeConflict(b, op, top, inst):
20 II ← the initiation interval of b
21 Tinst ← the execution cycles of inst
22 if II > 0 then // pipelined
23 for each time slot t ∈ Tinst do
24 if |t− top| % II == 0 then
25 return true
26 else // non-pipelined
27 for each time slot t ∈ Tinst do
28 if t == top then
29 return true
30 return false

unit instances of the same type of operations does not exceed
the limit given by Light-HLS.

Micro-binding is depicted in Algorithm 1. Herein, we mimic
the principles of the binding stage in Vivado HLS, and
encompass three design principles. Firstly, we greedily assign
the same hardware unit instance to operations of the same
type that share the same set of input but have different life
time of execution cycles, which is denoted as <case-1> (lines
10–13) in the algorithm. This can help with the reduction
of multiplexers and wiring to drive the input of instances
in the created RTL designs, which is considered in off-the-
shelf HLS tools. If this condition is not met, we assign the
target operation an instance that has no conflict with it in all
time slots, which is denoted as <case-2> (lines 14–17) in the
algorithm. Secondly, if the resource limit can not be met under
the current binding scenario, i.e., <case-3> (line 18), we
reschedule the execution time slot of the target operation to the
next time slot, and re-examine the outcome again. This process
is repeated until a valid binding result is achieved. The reason
of implementing <case-3> is that the scheduling algorithm
in Light-HLS aims at overall resource estimation and may
aggressively schedule a large number of operations into a
single cycle, leading to underoptimized solutions. Therefore,
we introduce a refinement step to the scheduled results during
operation-level binding. Thirdly, when loop pipelining is em-
ployed, a new loop iteration starts at the II-th (i.e., initiation
interval) stage of the prior iteration, instead of pending for the
prior iteration to complete its execution. As a result, the i-th

TABLE I: Operation types and IR opcodes for activity track-
ing.

Operation Type IR Opcode
arithmetic add, sub, mul, div, sqrt, fadd, fsub, fmul, fdiv, fsqrt

logic and, or, xor, icmp, fcmp
memory store, load

arbitration mux, select

stage of the k-th iteration overlaps with the (i + N×II)-th
stage of the (k + N )-th iteration, with N being any positive
integer. This effect is taken into account by the time conflict
checking function (lines 19–30) in micro-binding.

IR Annotator. The IR annotator instruments the IR code
with functions to keep track of the signal switching activ-
ities. Firstly, we correlate signal switching activities to the
input/output of the corresponding IR operations in HL-Pow,
as signal transitions are primarily driven by the relevant
operations. Secondly, we note that the power consumption is
triggered by the hardware units that are physically present
in the final design. Therefore, we identify four types of IR
operations that can be cast to real hardware instances that
significantly contribute to power consumption in datapaths
and control paths (e.g., finite state machine) in the generated
hardware, and mainly monitor their activities. These four
operation types are arithmetic, logic, memory and arbitration.
The operation codes associated with different operation types
are listed in Table I.

In addition, different IR operations can possibly contribute
to the activities of an identical hardware unit instance in
different execution cycles due to the effect of resource shar-
ing. Based on the DSP binder, we instrument the IR code
with an activity tracking function for each IR operation of
interest, recording the values of its input/output signals and
identify its assigned hardware unit instance. This IR annotator
is developed within the LLVM tool chain [29]. Finally, an
annotated IR code is generated after integrating the activity
tracking functions.

Activity Generator. The activity generator makes use of
the testbench of the target application and the annotated IR to
produce signal activities for each hardware design instance.
The testbench is provided by the users to explore power
behaviors of typical workload they are interested in. It first
compiles the given testbench, a library of activity tracking
functions, and the annotated IR into object files separately,
and then linked them together into a single executable file.
Through running the executable file with the input vectors
provided by the testbench, we are able to invoke the target
kernel function in the IR, and capture the cycle-accurate input
and output values for each hardware unit instance into a table.

We adopt Hamming distance [37] as the metric to quantify
the switching activities between two consecutive execution
cycles. Overall, Hamming distance counts the differences be-
tween two objects. In our context, the objects for comparison
are activity vectors of the same size in a binary format, and
thus, the hamming distance computation can be expressed as

HD(a, b) =

|a|∑
i=1

|ai − bi|. (3)

On this basis, we compute the average switching activity per
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hardware instance with

SAinst =

∑Minst

i=1

∑Ninst

j=1 HD(s(i, j), s(i, j − 1))

Minst ·Ninst
, (4)

where s(i, j) is the bit vector for an operand or result i at time
step j for the evaluated hardware instance inst, Minst is the
total number of operands and results, Ninst is the length of the
list of activity vectors for inst, and HD(·) is the Hamming
distance computation function in Eq. 3.

We further scale the average switching activity for each
hardware instance as follows:

SAscaled =
Ninst

L
· SAinst, (5)

where L is the latency of the target design point estimated by
HLS. In this equation, Ninst

L can be regarded as an activation
rate to amortize an instance’s average switching activity over
the total execution cycles.

Histogram Constructor. Histogram constructor establishes
a histogram representation of switching activities as features,
instead of simply using the raw activities per hardware design.
As the combination of different C/C++ programs and directive
configurations leads to different hardware realization that
varies in the numbers of operations, the size of the activity
set that can be obtained at this stage changes from sample
to sample as a consequence. Nevertheless, this deviates from
our goal of developing a one-size-fits-all power model that is
applicable to diversified applications. Therefore, we apply an
effective feature alignment technique in histogram constructor.

First, we construct a histogram per opcode listed in Table I,
in which each histogram has a fixed number of bins covering
a specific range of activities. Second, each hardware instance
is mapped to the histogram corresponding to its opcode, and
subsequently, each instance is distributed to a bin covering
its switching activity, SAscaled. Third, we derive two sub-
histograms from each histogram of opcode: a sub-histogram
to keep track of the number/percentage of instances per bin,
and another sub-histogram to compute average activities per
bin. This technique is visualized in Fig. 4 with an adder tree
as a toy example. In this way, we convert the operation-level
activity information with varying size into histogram-level
statistics that deliver a unified representation across different
applications, which are then employed as activity features.

In addition to using the two sub-histograms as operation-
level activity features, we also take the number, the sum and
average activities of the hardware instances per opcode as
design-level activity features.

We extensively investigate the per-bin activity coverage2

ranging from 6.25% to 50% and we discover that, when the
bin coverage is too small (i.e., 6.25%) or too large (i.e., 50%),
the accuracy degrades. For a small activity coverage per bin,
the model’s generalization ability is harmed in that the model
is more likely to be affected by noisy data in each bin. In
contrast, using the bins with a large activity coverage means
that the per-bin activity information is too coarse-grained to
be learned effectively. A medium per-bin activity coverage
(i.e., 12.5%-25%) benefits the model accuracy. Without loss

2Per-bin activity coverage is the ratio of the activity range covered by a
bin to the complete activity range.
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Fig. 4: The histogram representation of activity information,
using opcode add of an adder tree as an example.

of generality, we set the per-bin activity coverage to 25% in
the remaining parts of this paper.

C. Power Model Training

In the feature construction flow, HL-Pow produces a total
number of 221 features, including 11 architectural features
accounting for static power and 210 activity features indicative
of dynamic power. To obtain ground truth power values for
each design point in the training stage, we conduct Vivado
HLS and physical implementation flow, and collect real power
measurement during onboard implementation. Besides on-
board measurement, gate-level power estimation is another
option to get ground truth power values, whereas the accuracy
may deviate from real measurement.

We build regression models for power prediction using a
broad spectrum of supervised learning methods. These models
are (1) linear regression: classic linear regressors and Lasso
regressors with a l1-norm regularization term; (2) support
vector machine (SVM): support vector regressors with a radial
basis function (RBF) kernel, a linear kernel or a polynomial
kernel; (3) tree-based model: decision tree and ensemble mod-
els, including bagging trees, adaboost trees, random forests and
gradient boosting decision trees (GBDT); and (4) neural net-
work: multi-layer perceptron (MLP) and convolutional neural
network (CNN) models with one-dimensional kernels.

The feature set is a one-dimensional vector consisting
of architectural features followed by activity histograms of
opcodes in Table I, which allows the CNN models to mine the
intra-histogram correlation of activity features, the major type
of data correlation. We conduct feature selection to remove
features with no variation across different samples, i.e. features
that have the same value in all samples, reducing the number
of features from 221 to 84. This can improve the feature
quality and model performance. The power modeling task is
formulated as a regression problem and evaluated by the mean
average percentage error (MAPE):

MAPE =
1

N

N∑
i

|p̂i − pi|
pi

× 100%, (6)

where N , p and p̂ are the sample size, ground truth power
value and predicted power, respectively.

The hyperparameters of models are listed as follows: (1)
Lasso regression: regularization strength α in [0.1, 1]; (2)
SVM: penalty-free tube ϵ in [0.1, 0.5]; (3) tree-based model:
tree number in [200, 1600], tree depth in [4, 16], minimum
number of samples to split a node or be at a leaf node in
{2, 4, 8}; (4) neural network: layer number in [2, 4], learning
rate in [0.0001, 0.001], batch size in [32, 256], kernel size
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Fig. 5: The heatmaps of latency and power consumption for the application k3mm with two nested loops optimized with different
directive configurations: (a) latency (#cycle) of different loop unrolling factors (1/2/4/8); (b) latency (#cycle) of different loop
pipelining strategies (none/inner/outer loop pipelining); (c) power (mW) of different loop unrolling factors; (d) power (mW)
of different loop pipelining strategies.

in [3, 5] for CNNs. We apply ten-fold cross-validation to
generate ten different validation sets for model evaluation, and
the set of model hyperparameters that leads to the best average
validation results is selected for power model construction.
Finally, we average the inference results of the set of models
presenting the highest accuracy in the cross validation, which
serves as an effective ensemble strategy.

V. DESIGN SPACE EXPLORATION

With our power modeling framework, power prediction for a
design point can be greatly expedited without running through
the full HLS, physical implementation, and gate-level simula-
tion/onboard measurement flow. However, when the goal is to
find the Pareto-optimal points from a large design space, there
is still a large runtime overhead to exhaustively assess power
for a large amount of design points through HL-Pow power
inference. To alleviate this issue, we propose a novel DSE
algorithm to approximate the Pareto frontier between latency
and power consumption by selectively sampling a small subset
of the design points. The efficiency and efficacy of our DSE
algorithm is guaranteed by (1) the fast and accurate QoR
estimation of HL-Pow, and (2) the a priori domain knowledge
that discloses the effect of pipelining and unrolling on both
latency and power from real data derived from FPGA HLS
and guides the DSE.

A. Observation
As for HLS, the joint effect of loop pipelining and unrolling

on latency/power has not been clearly investigated. Herein,
we derive two key observations from statistical analysis of
a large spectrum of datasets to help elucidate this effect,
which is then turned into a priori knowledge to navigate
the sampling decision of Pareto-optimal points in our DSE
framework. These two observations are elaborated as follows.

Observation 1: The latency/power consumption of HLS
designs tends to be decreasing/increasing monotonically as
the unrolling factor increases from one to maximum, or the
pipelining option is changed from none, inner-loop to outer-
loop pipelining.

Observation 2: The loop pipelining exerts a greater impact
on latency and power consumption in comparison to loop
unrolling.

Observation 1 is deduced from the fact that, by using
a larger loop unrolling factor or a more aggressive loop
pipelining scheme, the HLS designs are optimized with a
higher extent of spatial or temporal parallelism, respectively.
This makes it possible for more operations to be scheduled in a
single execution cycle, finally leading to a reduction of latency
along with a lift of power consumption. We verify the effect
of observation 1 and demonstrate the results using a series of
heat maps derived from real data, as shown in Fig. 5, in which
the darker regions indicate higher performance (lower latency)
and higher power consumption. Fig. 5 confirms that the trend
of latency and power consumption regarding different directive
configurations comply with observation 1.

As for observation 2, we propose to use the metric standard
deviation reduction (SDR) [38] for illustration, which can be
formulated as

SDR = sd(T )−
∑
i

|Ti|
|T |

× sd(Ti), (7)

in which sd(·) is the standard deviation computation function,
T is the complete dataset and Ti denotes the i-th subset of T
split by the target attribute. In all, the SDR measures the ability
that an attribute splits a dataset into subsets: the higher the
SDR, the more homogeneous the data is in each split subset.
This discloses that the changes of an attribute with higher SDR
generally lead to larger variances in the evaluation metric of
interest. Therefore, an attribute with higher SDR on a metric
is of greater importance for that metric.

In our circumstance, the objective is to compare the impact
of loop unrolling/pipelining on latency/power by quantitatively
evaluating how much these directives impact the datasets,
which can be reduced to SDR computation. Correspondingly,
the standard deviation is computed for the metrics latency and
power, respectively. The attributes used for data splitting are
either loop unrolling or pipelining with different configura-
tions. Table II shows the SDR computed for different datasets.
Overall, pipelining consistently outperforms unrolling in SDR,
and eventually yields relative SDR improvement of 3.26–
6.18× and 1.07–1.94× for latency and power, respectively.
Based on this discovery, we can come to the conclusion that
pipelining is a more effective and powerful strategy in tuning
latency and power, compared with unrolling, which manifests
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Fig. 6: Overall flow of the a priori-guided design space exploration algorithm.

TABLE II: SDR of latency and power over loop unrolling and
pipelining.

Dataset Design SDR of Latency (#cycle) SDR of Power (mW)
Size Unrolling Pipelining Unrolling Pipelining

atax 4096 123094 446494 287 323
16384 996343 3554805 355 406

bicg 4096 952 3371 58 72
16384 3892 13442 73 95

gemm 4096 112710 546110 323 365
16384 905284 4357477 460 528

gesummv 4096 927 4075 66 89
16384 3776 16159 78 118

gemver 4096 1200 5446 93 108
16384 4936 21741 97 119

k2mm 4096 198147 982741 454 513
16384 1596195 7825513 97 188

k3mm 4096 147876 642265 289 308
16384 1200884 5107215 83 107

mvt 4096 1101 3702 52 73
16384 4490 14650 70 103

syrk 4096 85336 517751 219 340
16384 681146 4135308 252 411

syr2k 4096 167731 1036941 356 494
16384 1341633 8274238 369 552

our observation 2.

B. DSE Algorithm

We devise a five-stage DSE algorithm by taking advantage
of the aforementioned two key observations distilled from real
data, as depicted in Fig. 6.

Pruning and Division. We first perform a pruning and
division stage to trim down the design space, and divide
the design space into several regions to explore locally. The
pruning is based on the phenomenon that when an outer loop is
pipelined, all the inner loops are automatically unrolled [2]. In
such a situation, regardless of what unrolling factors are set for
the inner loops, the resulting architectures are the same as the
one without unrolling the inner loops. Therefore, we reserve
one valid design point and prune away the duplicate ones when
this situation happens. Afterwards, we split the design space
into multiple regions by the array-based directive, namely,
array partitioning, and use loop-based directives including
loop pipelining and loop unrolling for the search of promising
points within each region.

Initial Sampling. Given the pruned and divided design
space, an initial sampling stage is conducted to collect the
first set of design points from the target application to assess.
The heuristics is to select representative points in each region
that are spreading out over the range of latency and power.
We transform each region into a grid-like representation such
that unrolling and pipelining constitute the x and y axis,
respectively, and let the extent of parallelism increases along

Loop

for (i=0; i<8; i++){
    c[i] = a[i] * b[i];
    …

Directive Config.

U: unrolling
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Latency: High←Low 

U1 U2 U4 U8 U1 U2 U4 U8 U1 U2 U4 U8
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Loop

for (i=0; i<8; i++){
    c[i] = a[i] * b[i];
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Loop
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    …
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Loop

for (i=0; i<8; i++){
    c[i] = a[i] * b[i];
    …
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P: pipelining

Fig. 7: Presort of design points regarding latency and power
in a pipelining-then-unrolling priority order.

with the axes. According to observation 1, the trend of
latency/power can be regarding as monotonically increasing
along the x or y axis. On this basis, the design points in the
corner and in the center of each grid are selected as the initial
sampling set, in that they are most likely to demonstrate dis-
tinct values for latency and power. Without loss of generality,
we show an example with a two-level nested loop in stage 2
of Fig. 6. The corner and center point set {A, B, C, D, E}
is selected initially, yielding the directive configuration set of
{Pnone +U1, Pnone +Umax, Pinner +Umax/2, Pouter +U1,
Pouter + Umax}.

Metric Evaluation & Pareto Frontier Search. In metric
evaluation, the initial sampling set is fed into power inference
of HL-Pow to evaluate power consumption. Likewise, the
latency is simultaneously estimated by Light-HLS as a by-
product. After obtaining both the estimated latency and power
values, Pareto frontier search stage is performed to compute
an approximate Pareto-optimal point set from the currently
sampled dataset.

Candidate Selection. The candidate selection stage lever-
ages the resulting approximate Pareto-optimal points as refer-
ences for identifying promising candidate points to examine in
the next round. Our heuristics for the candidate point selection
is inspired by the binary search algorithm. That is, we attempt
to iteratively search for the points that lie in the center of every
two consecutive Pareto-optimal points from the same region
to evaluate, which enables efficient traversal across the Pareto
set.

To determine whether a point locates in the center of
two consecutive Pareto-optimal points, we introduce a simple
yet effective method to presort design points by loop-based
directives with respect to latency and power. According to
observation 2, pipelining leads to more pronounced changes in
both latency and power in contrast to unrolling. Following this,
we transform the design space between every two consecutive
approximate Pareto-optimal points in a region into an ordered
sequence by viewing pipelining as the primal factor and then
unrolling, i.e., in a pipelining-then-unrolling priority order, as
depicted in Fig. 7. In this way, we can regard the latency/power
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Fig. 8: The effect of different priority orders of unrolling/pipelining on latency/power for the application bicg with two nested
loops: (a) latency (#cycle) in a pipelining-then-unrolling priority order; (b) latency (#cycle) in a unrolling-then-pipelining
priority order; (c) power consumption (W) in a pipelining-then-unrolling priority order; (d) power consumption (W) in a
unrolling-then-pipelining priority order.

as monotonically decreasing/increasing from left to right,
respectively. This case is verified with real datasets as shown in
Fig. 8, where we showcase the changes of latency and power
under different priority orders of unrolling and pipelining.
Fig. 8 (a) and (c) imply clear trends of latency and power in
a pipelining-then-unrolling order, respectively, and vice versa,
as shown in Fig. 8 (b) and (d).

For each ordered sequence of design points between approx-
imate Pareto-optimal points, we locate the center point and add
it to the sampling set. If this center point has already been
added to the sampling set, we remove it from the sequence,
and search for a new center point to add.

To summarize, the five stages shown in Fig. 6 are iterated
to search for promising design points until a user-defined
budget of HL-Pow runs is reached or no more candidates exist.
Finally, to ensure that the real Pareto-optimal points are not
pruned away due to the error induced by power modeling,
we allow the design points within a certain deviation range
from the nearest Pareto-optimal points to be incorporated into
the candidate Pareto set. According to the experiments in
Section VI-B, we set the deviation range to be within ±5%
of the power of the approximate Pareto-optimal points, which
is close to the power estimation error.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
The HL-Pow design flow is fully automated and imple-

mented with Python and C++ for feature construction, model
establishment and power inference. The conventional and
deep learning machine learning models are implemented in
Scikit-learn [39], XGBoost [40] and Pytorch [41], respec-
tively. We apply our design flow to evaluate up to ten
representative benchmarks from different design categories
in Polybench [42], each of which produces multiple design
points. The design points are synthesized using floating-point
arithmetic and implemented under a timing constraint of 10
ns. To obtain ground truth power values, we pass the design
points through the complete EDA flow from HLS to bitstream
generation using AMD Xilinx Vivado 2018.2 toolkit. Then, we
implement all the design points on an AMD Xilinx Ultrascale+
ZCU102 FPGA board and collect real power consumption
through onboard measurement using the Power Advantage
Tool [43].
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Fig. 9: Breakdown of total power consumption.

For each benchmark, we generate design points with the
design sizes of 4096 and 16384, resulting in 20 unique datasets
for model development and assessment. We uniformly opti-
mize the datasets using cyclic array partitioning on {the last
dimension, the last two dimensions} with factors in {1, 2, 4,
8}, loop pipelining with configurations in {none, inner, outer},
and loop unrolling with factors in {1, 2, 4, 8}. The loop-based
directives are applied to the inner-most two levels of nested
loops. This creates a design space of 32768 design points.
However, to keep the design space compact, we simply remove
the design points with the loop unrolling factor larger than the
array partitioning factor, which causes memory conflicts and
hampers optimization. Finally, this produces a design space
of 4672 effective design points per dataset. To construct our
dataset for modeling, we uniformly sample 531 design points
from the design space for each dataset, producing a total
number of up to 10478 samples.

The power range of the datasets falls within 0.3–5.3 W and
the breakdown of power in different power ranges is shown in
Fig. 9. We can see that the static power dominates in the low
power range (i.e., 0–2 W), while the dynamic power becomes
the main source of total power in the high power range (i.e.,
3–5.3 W). It is conceivable that both the static and dynamic
power are fundamental constituents that should be carefully
taken into account in power modeling.

B. Accuracy and Runtime of Power Modeling

In this experiment, we examine the power estimation accu-
racy and the runtime speedup of HL-Pow over off-the-shelf
methods. During model training, we adopt a leave-one-out
scheme: a benchmark dataset with both the design sizes is
left out of the complete benchmark set and served as the test
set only, while the others are used for training. The training
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TABLE III: Mean average percentage error (%) of different categories of models for HL-Pow and variants with different feature
fidelity.

Dataset Design Linear SVM CNN GBDT
Size HL-Pow w/ HLS w/ Impl. HL-Pow w/ HLS w/ Impl. HL-Pow w/ HLS w/ Impl. HL-Pow w/ HLS w/ Impl.

atax 4096 7.22 7.28 6.07 7.37 6.54 5.95 4.51 3.44 4.53 6.23 8.83 8.88
16384 5.38 6.48 5.59 5.23 4.95 5.00 5.80 3.87 3.36 5.80 3.67 3.92

bicg 4096 5.44 4.80 3.84 4.14 3.91 3.44 3.16 3.17 2.76 2.48 2.30 2.29
16384 3.70 3.27 3.30 3.56 3.07 3.25 5.07 4.65 4.25 3.51 3.46 3.07

gemm 4096 7.16 7.33 6.00 6.24 6.10 5.37 5.28 4.57 4.52 4.63 4.13 3.85
16384 10.18 8.53 5.69 7.79 8.17 5.80 6.19 5.16 4.87 6.11 4.80 4.18

gesummv 4096 7.00 7.00 6.68 6.45 5.68 5.27 3.76 3.87 3.89 4.31 3.42 3.70
16384 8.62 14.81 12.82 8.51 12.82 12.42 7.97 6.81 7.97 7.58 8.06 8.07

gemver 4096 11.30 7.51 6.73 6.56 7.55 8.04 6.06 7.03 6.05 5.89 5.44 4.68
16384 9.02 9.01 8.87 7.25 6.03 6.11 9.28 9.88 10.38 6.40 4.81 4.08

k2mm 4096 6.46 4.20 4.31 6.54 4.68 4.16 5.00 4.17 3.50 4.88 4.04 3.41
16384 7.56 10.03 8.03 7.73 9.61 8.31 8.89 8.83 8.74 6.96 8.22 6.85

k3mm 4096 7.11 5.81 5.16 5.41 5.06 4.85 5.47 4.48 5.32 4.75 4.55 4.02
16384 8.78 9.84 6.59 6.49 8.67 7.83 9.60 6.10 8.37 4.31 3.28 3.22

mvt 4096 4.87 4.24 3.70 3.63 3.14 3.00 1.97 1.89 1.78 1.76 1.91 1.90
16384 4.64 5.12 4.05 4.08 5.57 4.64 2.86 2.85 2.96 3.59 3.80 3.27

syrk 4096 4.44 5.97 4.58 4.53 6.41 4.88 3.88 3.00 2.52 3.67 3.65 3.42
16384 4.54 6.90 4.94 4.70 6.08 3.95 4.29 3.53 2.83 3.48 3.38 2.84

syr2k 4096 5.13 7.30 4.77 5.20 5.33 4.18 5.07 4.27 3.62 4.09 3.25 3.22
16384 7.80 9.88 7.53 6.52 7.27 6.01 7.80 9.06 8.47 6.20 7.15 5.34

average – 6.80 7.23 5.94 5.88 6.30 5.60 5.55 4.99 4.99 4.82 4.59 4.20

process is carried out in multiple rounds, with each round
selecting a complete dataset as the test set. This allows us
to make full usage of every dataset except the current test
set to construct learning models, while ensuring that the pre-
trained model is not biased towards the given test set. To
evaluate the efficacy of our feature construction method via
our customized design flow, we compare our method to two
variants with higher feature fidelity: 1) w/ HLS (i.e., our
preliminary work [22]): replacing the light-weight scheduling
and binding algorithms in Fig. 3 with the exact counterparts of
a realistic HLS flow, i.e., Vivado HLS, so that accurate latency
and activity histograms can be obtained in feature construction;
and 2) w/ Impl.: based upon w/ HLS, further getting exact
resource utilization from Vivado’s physical implementation to
calibrate the relevant approximate architectural features (i.e,
resource utilization and the corresponding scaling factors).
Table III reports the MAPE (see Eq. 6) of the best models from
the four model categories, as demonstrated in Section IV-C.

As shown in Table III, the best overall accuracy of HL-
Pow is achieved by the GBDT models, with an average error
of 4.82% from the actual measurement. The two variants w/
HLS and w/ Impl. demonstrate slightly higher accuracy than
HL-Pow, reducing the error to 4.59% and 4.20%, respectively.
This improvement stems from the adoption of more accurate
features through real HLS and physical implementation, but at
the cost of much larger execution time, as shown in Table IV.
As for the linear and SVM models, it is interesting to note that
the accuracy of HL-Pow exceeds that of w/ HLS. We attribute
this phenomenon to the joint effects of the underfitting issue
caused by the simplicity of these models and the uncertainty
of modeling due to noise in the datasets. Overall, from the
perspective of the best models, the prediction accuracy of
HL-Pow is on par with that of the two variants with higher
fidelity of features, which confirms that HL-Pow is able to
preserve high feature quality by effectively approximating
the intrinsic mechanism of HLS. In addition, HL-Pow shows
strong scalability for different design sizes.

Fig. 10 showcases the difference between the prediction
results of HL-Pow for every design point. A more severe
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Fig. 10: HL-Pow power estimation v.s. onboard measurement.

TABLE IV: Breakdown of average runtime (second) per sam-
ple with HL-Pow and the total runtime of baseline methods.

Dataset Design HL-Pow w/ HLS Onboard
Size Cust. HLS Feat. Gen. Inference Meas.

atax 4096 5.6 2.0 0.7 53.9 1279.1
16384 31.3 6.1 0.7 203.7 1831.5

bicg 4096 5.6 1.2 0.6 25.0 1394.0
16384 31.2 0.2 0.6 59.9 1688.8

gemm 4096 9.0 2.4 0.6 263.4 1599.0
16384 46.3 7.2 0.6 1243.4 3087.5

gesummv 4096 6.0 1.4 0.7 26.7 1316.8
16384 31.3 0.3 0.7 53.1 1719.6

gemver 4096 24.3 3.0 0.7 278.5 1905.1
16384 102.4 0.3 0.6 1129.1 2982.3

k2mm 4096 14.1 5.2 0.6 106.9 1467.7
16384 66.8 13.6 0.7 205.6 2403.0

k3mm 4096 13.8 5.8 0.6 109.4 1493.7
16384 64.7 19.0 0.6 232.2 2708.9

mvt 4096 5.7 1.3 0.6 24.0 1463.7
16384 31.4 0.2 0.6 44.4 1818.8

syrk 4096 9.0 3.2 0.7 243.3 1636.5
16384 43.0 7.1 0.6 1074.5 3383.0

syr2k 4096 17.7 5.4 0.7 111.9 1518.3
16384 97.1 14.7 0.8 375.1 2729.6

Runtime: (1) HL-Pow: customized HLS + feature generation + power inference. (2) w/ HLS:
Vivado HLS + feature generation + power inference. (3) Onboard Meas.: Vivado HLS + logic
synthesis + placement & routing + bitstream generation + onboard measurement.

deviation from the line y = x means a larger error induced.
From Fig. 10, we can see that HL-Pow can accurately capture
the power behaviors across the power ranges of 0.3–5.3 W. The
average error of HL-Pow within the power range of 4–5.3 W
is 7%, which is slightly higher than the average. We conjecture
this situation can be improved by enlarging the sample size
for this power range.
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Fig. 11: Top 20 most important features in HL-Pow.

Furthermore, HL-Pow demonstrates a speedup of 1.4–23×
(7.8× on avg.) over w/ HLS, and w/ HLS further reveals a
speedup of 2.5–61× (20× on avg.) over onboard measure-
ment. Finally, HL-Pow reaps a compound speedup of 24–
190× (84× on avg.) over onboard measurement, which can
be deduced from Table IV. This notable gain is attributed to
(1) the employment of the fully customized and tailored HLS
flow; and (2) the one-size-fits-all learning model for direct
power inference without the need of conducting any post-RTL
EDA flow.

C. Feature Importance

In this experiment, we investigate the validity of features
that are captured by HL-Pow. We adopt the Gini feature
importance as the evaluation metric, which is computed as
the normalized total reduction of the average error brought by
the target feature during tree growing. For each feature, we
calculate the sum of its importance across the GBDT models
developed with different test cases. Fig. 11 visualizes the top
20 important features in HL-Pow after normalization. We can
observe that the architectural features are more prominent in
the magnitude of importance, whereas the activity features are
more dominant in the occupancy rate of the top 20 features,
from which it is natural to infer that both of these two types of
features are crucial in power modeling. In addition, the scaling
factor features (denoted with the prefix sf in Fig. 11) have
high ranks in feature importance. Therefore, they are proven to
be informative and crucial in the power modeling. In all, this
experiment justifies the effectiveness of our proposed feature
construction method.

D. Generalization Ability Towards Diversified Applications

In this experiment, we further study the generalization abil-
ity of HL-Pow. We use HL-Pow for direct power prediction of
five representative MachSuite [44] datasets that have distinctly
different characteristics from the training sets in terms of loop
patterns, array manipulations and design sizes. We directly
feed the features of these new datasets into the pre-trained
models built in Section VI-B, and take the average as the final
estimate. As shown in Table V, the best average error is 5.83%,
which is derived from the GBDT model. This high prediction
accuracy (i.e., low error) proves the high generalization ability
of HL-Pow to adapt to applications from a wide spectrum of
domains without the need to rebuild the power model.

TABLE V: Estimation error (%) of HL-Pow on applications
with unseen characteristics.

Dataset Linear SVM CNN GBDT
md-knn 10.13 6.60 7.92 6.49

fft-strided 7.78 21.94 6.36 7.13
gemm-ncubed 16.25 13.45 4.10 5.79
spmv-ellpack 12.22 15.45 6.60 2.32

stencil-2d 7.02 23.02 10.43 7.44
average 10.68 16.09 7.08 5.83

E. QoR of DSE Algorithm

In this experiment, we assess the performance of our pro-
posed a priori-guided DSE algorithm described in Section V.
The predictive power models in Section VI-B are integrated
into the metric evaluation stage of our DSE algorithm, each
of which only provides the QoR estimation for the unseen
datasets in their training stage. Experiments are conducted
for the datasets with a design size of 4096. We evaluate
the QoR of the DSE algorithm using the average distance
from reference set (ADRS). ADRS is a metric to quantify the
difference between the approximate and the exact Pareto sets,
which can be formulated as

ADRS(Ŝ, S) =

 1

|S|
∑
s∈S

min
ŝ∈Ŝ

(δ(ŝ, s))

× 100%,

δ(ŝ, s) = max

{
0,

l(ŝ)− l(s)

l(s)
,
p(ŝ)− p(s)

p(s)

}
,

(8)

where Ŝ is the approximate Pareto set, S is the exact Pareto
set, and l(·) and p(·) denote functions to retrieve the latency
and power, respectively. The lower the ADRS, the smaller the
gap between the approximate Pareto set and the exact one.

Firstly, we study how different initial sampling rates impact
the quality of the DSE algorithm, as shown in Fig. 12 (a) and
(b). On one hand, Fig. 12 (a) reveals that, the ADRS starts to
drop rapidly as the initial sampling rate is lifted, but the results
come out to be stable from a certain initial sampling rate. On
the other hand, Fig. 12 (b) shows that when the initial sampling
rate keeps increasing to a large portion of the total sampling
budget, the ADRS in turn degrades due to a lack of budget for
iterative searching of candidate points. Putting it all together, it
is essential to keep a good balance of the sampling proportion
between initial sampling and iterative searching in an effort
to enable high QoR of the DSE algorithm. Overall, an initial
sampling rate between 0.75% and 3% yields desirable QoR for
a wide range of total sampling budgets, which demonstrates
the high adaptability of our DSE algorithm to sampling rates.

Secondly, we examine the ADRS and runtime of the DSE
algorithm given different total sampling budgets. As shown
in Fig. 12 (c), the results demonstrate a good convergence
trend, which validates the generalization ability of our DSE
algorithm in handling diverse applications. In particular, the
average ADRS for the total sampling budgets of 4%, 5%, 6%
and 7% are 1.79%, 1.33%, 1.04% and 0.85%, respectively.
From Fig. 12 (d), we can see that the runtime of DSE is
linearly related to the total sampling budget. This reveals
that our DSE algorithm is able to traverse the design space
uniformly under different sampling budgets.

Thirdly, we compare our DSE algorithm with various meth-
ods including: (1) using ground truth power measurement
(GTM) as a replacement of the power estimation in the DSE
algorithm, so as to investigate how the accuracy of power
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Fig. 12: QoR of DSE: (a) ADRS with different initial sampling rates given a total sampling budget of 2%; (b) ADRS with
different initial sampling rates given a total sampling budget of 5%; (c) ADRS with different total sampling budgets given an
initial sampling rate of 0.75%; and (d) Runtime with different total sampling budgets given an initial sampling rate of 0.75%.

TABLE VI: ADRS and runtime of various DSE methods.
Dataset ADRS (%) Runtime Speedup

GTM BO GA HL-Pow GTM BO GA HL-Pow
atax 1.51 9.58 5.33 3.26 1 25 196 115
bicg 0.38 3.54 3.59 0.55 1 27 205 137

gemm 2.18 7.93 3.53 2.89 1 32 164 134
gesummv 0.29 3.98 3.11 0.37 1 28 205 141
gemver 1.39 4.73 5.71 2.34 1 39 86 55
k2mm 2.13 7.71 3.45 2.48 1 23 70 53
k3mm 0.33 2.24 2.64 0.75 1 20 68 66

mvt 0.54 4.92 3.66 0.45 1 36 207 156
syrk 2.19 6.78 4.72 2.56 1 28 171 126
syr2k 1.79 9.23 8.20 2.23 1 23 85 73

average 1.27 6.06 4.39 1.79 1 28 146 105

estimation influences the effectiveness of the DSE algorithm;
(2) combining our predictive model with two widely used
DSE algorithms for FPGA HLS, i.e., one with Bayesian
optimization (BO) [10] and the other with genetic algorithm
(GA) [5], which are developed with the tools OpenBox [45]
and pymoo [46], respectively, in this paper. We run these
baseline methods with a total sampling budget of 4%. Results
are shown in Table VI. As for DSE quality, GTM produces
the best ADRS, and HL-Pow exhibits comparable performance
with only a small drop of 0.52%, significantly outperforming
BO and GA. This fully justifies the value of our pre-RTL
power modeling method in assisting early design optimization.
In terms of runtime, both HL-Pow and GA yield remarkable
speedup over GTM and BO. The HL-Pow is slightly slower
than GA in that HL-Pow spends more time evaluating more
complex design points that stand a larger chance of improving
ADRS. Overall, the DSE of HL-Pow demonstrates superiority
in both ADRS and speed over existing DSE methods.

VII. CONCLUSION

This paper presents a learning-based power modeling and
optimization framework for FPGA HLS, named HL-Pow. HL-
Pow achieves an average power prediction error of 4.82%
with a speedup of up to 24–190×, and an error of 5.83% for
applications in domains different from the training sets. The
DSE engine delivers an ADRS of 1.79% by only sampling 4%
of design points in large-scale design spaces.
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